альтернативные источники энергии картофель

3. Зарубежный опыт использования альтернативных источников энергии

Первая в мире силовая установка, топливом для которой служит скорлупа орехов, была официально открыта 18 сентября в Гимпи, к северу от Брисбена, на юго-восточном побережье Австралии. В первый год она должна обеспечить электричеством порядка 1200 домов провинции Квинсленд. Зеленый генератор, строительство которого обошлось в 3 миллиона австралийских долларов, является плодом совместного предприятия, созданного правительственной компанией Ergon Energy и расположенной в Гипми компанией Suncoast Gold Macadamias, третьего по величине в мире производителя орехов. Каждый час эта электростанция будет перерабатывать до 1.680 килограммов ореховой скорлупы, производя при этом 1,5 мегаватта электричества.

В индийском городе Тирупати ученые университета решили использовать фрукты, овощи и отходы от них для производства альтернативных источников питания для несложной бытовой техники с низким потреблением энергии. Батарейки содержат внутри пасту из переработанных бананов, апельсиновых корок, и других овощей, и фруктов. В которую внедрены электроды из цинка и меди. Одновременное действие четырех таких батареек позволяет запустить стенные часы, пользоваться электронной игрой и карманным калькулятором, а для ручных часов и одной батарейки хватает. Новинка индийской электроники рассчитана, прежде всего, на жителей сельских районов страны, которые могут сами заготавливать фруктово-овощные ингредиенты для подзарядки биобатареек.

4. Практическая часть

4.1. Состав фруктов и овощей

Растения содержат 6498% воды, углеводы, органические кислоты (яблочную, лимонную, винную, бензойную, муравьиную), азотистые вещества, жир, дубильные и красящие вещества, эфирные масла, ферменты, фитонциды, витамины, минеральные вещества.

Фрукты содержат органические кислоты: например, лимонная кислота присутствует в апельсинах, лимонах и других цитрусовых, яблочная кислота в яблоках и винная кислота в винограде. Именно соотношение сахара и кислотности чаще всего используется в технологических характеристиках фруктовых продуктов.

Соотношение кислоты и щелочи в каком-либо растворе называется кислотно-щелочным равновесием (КЩР), хотя физиологи считают, что более правильно называть это соотношение кислотно-щелочным состоянием. КЩР характеризуется специальным показателем рН (powerHydrogen «сила водорода»), который показывает число водородных атомов в данном растворе. При рН, равном 7,0, говорят о нейтральной среде. Чем ниже уровень рН, тем среда более кислая (от 6,9 до 0). Щелочная среда имеет высокий уровень рН (от 7,1 до 14,0). [14]

Таким образом, мы видим, что большинство фруктов содержит в своем составе слабые растворы кислот. Именно поэтому их можно легко превратить в простейший гальванический элемент.

Создание и исследование источников электрической энергии из овощей и фруктов

Для проведения экспериментов мне понадобились (Приложение 1, фото 2):

фрукты и овощи (лимон, яблоко, сырой картофель, свежий огурец);

медные и оцинкованные пластины;

Измерение силы тока и напряжения, вырабатываемого одним элементом

Медную и цинковую пластину вставляем в овощи или фрукты. Далее я экспериментально измерила с помощью мультиметра и проанализировала силу тока и напряжение таких батарей.

Источник

Альтернативные источники энергии. Овощи и фрукты

I. Введение

Моя работа посвящена необычным источникам энергии. В окружающем нас мире очень важную роль играют химические источники тока. Они используются в мобильных телефонах и космических кораблях, в крылатых ракетах и ноутбуках, в автомобилях, фонариках и обыкновенных игрушках. Мы каждый день сталкиваемся с батарейками, аккумуляторами, топливными элементами.

Слово «энергия» прочно вошло в обиходный словарь начала XXI в. человечество в последнее время сталкивается с дефицитом энергоресурсов. Грядущее истощение запасов нефти и газа побуждает ученых искать новые возобновляемые источники энергии

Возобновляемые источники сырья и способы получения из них энергии – магистральная тема многих университетских исследований. Лаборатория в Нидерландах изучает возможность получения электричества из растений, точнее, из корневой системы растений и из бактерий, находящихся в почве. 1

Энергия солнца, энергия ветра, энергия приливов и отливов возобновляемым источникам энергии в последнее время всё чаще причисляют и растения. Ведь только зеленое растение является той единственной в мире лабораторией, которая усваивает солнечную энергию и сохраняет ее в виде потенциальной химической энергии органических соединений, образующихся в процессе фотосинтеза.

Один из альтернативных источников энергии – процесс фотосинтеза. Процесс фотосинтеза, протекающий в клетке растения, является одним из главных процессов. В ходе него происходит не только разделение молекул воды на кислород и водород, но и сам водород в какой-то момент оказывается разделенным на составные части — отрицательно заряженные электроны и положительно заряженные ядра. Так что, если в этот момент ученым удастся «растащить» положительно и отрицательно заряженные частицы в разные стороны, то, по идее, можно получить замечательный живой генератор, топливом для которого служили бы вода и солнечный свет, а кроме энергии, он бы еще производил и чистый кислород. Возможно, в будущем такой генератор и будет создан. Но для осуществления этой мечты нужно отобрать наиболее подходящие растения, а может быть, даже научиться изготавливать хлорофилловые зерна искусственно, создать какие-то мембраны, которые бы позволили разделять заряды.

Данные исследований лаборатории молекулярной биологии и биофизической химии МФТУ по созданию таких мембран показали, что живая клетка, запасая электрическую энергию в митохондриях, использует ее для произведения очень многих работ: строительства новых молекул, затягивания внутрь клетки питательных веществ, регулирования собственной температуры.. С помощью электричества производит многие операции и само растение: дышит, движется (как это делают листочки всем известной мимозы-недотроги), растет.

Читайте также:  как в арить картошку

Цель моей работы – исследование электрических свойств овощей и фруктов.

Задачи:

Объект исследования: фрукты и овощи.

Предмет исследования: свойства овощных и фруктовых источников тока.

Гипотеза: Так как фрукты и овощи состоят из различных минеральных веществ (электролитов), то они могут стать природными источниками тока.

Методы исследования: изучение и анализ литературы, проведение эксперимента, анализ полученных данных.

II. Основная часть

2.1 История создания батарейки

2.2 Создание фруктовой батарейки

а) с использованием одного элемента

Для создания фруктовой батареи мы попробовали взять лимоны, яблоки, огурцы свежие и соленые, помидоры, картофель сырой и вареный. Положительным полюсом определили несколько блестящих медных пластин. Для создания отрицательного полюса решили использовать оцинкованные пластины. Конечно же, понадобились провода, с зажимами на концах. Ножом сделала в фруктах небольшие надрезы, куда вставила пластины (электроды). После соединения всех частей воедино у меня получилась фруктовая или овощная батарейка (рис. 1).

Источник

Альтернативные источники энергии картофель

Работа посвящена необычным источникам энергии. Однажды я узнал, что из фруктов и овощей можно сделать батарейку, которая будет давать электрический ток. Нас очень заинтересовал этот факт, и мы захотели узнать об этом больше.

Впервые о нетрадиционном использовании фруктов я прочитал в книге Николая Носова. По замыслу писателя, Коротышки Винтик и Шпунтик, жившие в Цветочном городе, создали автомобиль, работающий на газировке с сиропом.Мы подумали, а сможет ли батарейка из картофеля подзарядить мобильный телефон.

Цель проекта: получение электрического тока при помощи картофеля.

1. Проанализировать литературу, Интернет-ресурсы по теме исследования.

2. Ознакомиться с принципом работы батарейки.

3. Провести опрос одноклассников «Что вы знаете о токе?».

4. Провести исследование напряжения в гальванических элементах из картофеля.

5. Провести эксперимент по созданию батарейки из картофеля.

Объект исследования – электрические батарейки.

Предмет исследования – картофель какисточник тока.

Гипотеза: предположим, что из картофеля можно сделать источник тока – батарейку.

Теоретическая значимость заключается в анализе специальной литературы.

Практическая значимость заключается в выводах по результатам эксперимента и создании батарейки из картофеля.

На I этапе проводили теоретическое исследование, анализ литературы.

На II этапе – исследование и эксперимент, делали выводы.

История создания батареек

Что такое батарейка

Батарейка – это удобное хранилище электричества, которое может быть использовано для обеспечения энергией переносных устройств. Некоторые батарейки предназначены для одноразового использования, другие можно перезаряжать. Батарейки бывают разнообразной формы и размеров (Приложение 1). Некоторые – маленькие, как таблетка. Некоторые – величиной с холодильник. Для начала мы решили разобраться, как устроена обычная батарейка и как в ней создаётся электрический ток. Посмотрев в энциклопедии «Всё обо всём» и по рисункам разобрались, что это две металлические пластины, помещенные в специальное химическое вещество – электролит. Одна пластина подключена к выводу «+», другая – к выводу «-».Электрод с более отрицательным потенциалом, на котором при разряде протекает процесс окисления, называется отрицательным электродом, или анодом, и обозначается знаком (?). Электрод с более положительным потенциалом, на котором происходят реакции восстановления, принимается за положительный электрод, называется катодом и обозначается знаком (+). Стоит подключить к батарейке нагрузку, например, лампочку, как от пластины «+» к пластине «-» потечёт ток. Начнется химическая реакция в электролите, которая начнет перекидывать электроны с «-» (отрицательной) пластины на «+» (положительную).

В начале своих исследований мы решили узнать, откуда появилась батарейка. Еще в 1791 году Итальянский врач ЛуиджиГальванисделал важное наблюдение, только не сумел его правильно истолковать.

Батарейки, которые можно заряжать многократно, изобрел в 1859г. французский физик Гастон Планше.

Успехи ученых в создании овощных и фруктовых батареек

Ученые утверждают, что, если у вас дома отключат электричество, вы сможете некоторое время освещать свой дом при помощи лимонов.

Индийские ученые работают над созданием необычных батареек для несложной бытовой техники с низким потреблением энергии. Внутри этих батареек должна быть паста из переработанных бананов и апельсиновых корок. Одновременное действие четырех таких батареек позволяет запустить настенные часы, а для ручных часов хватит одной такой батарейки.

Компания Sоnу на научном конгрессе в США представила батарейку, работающую на фруктовом соке. Если «заправить» такую батарейку 8 мл сока, то она сможет проработать в течение одного часа. Применяться новинка может в плеерах, мобильных телефонах.

А группа ученых из Великобритании создала компьютер, источником питания для которого является картошка. За основу был взят старый компьютер с маломощным процессором Intе1 386. В него вместо жесткого диска поставили карту памяти на 2 мегабайта. Питается это устройство 12 картофелинами, которые меняются каждые 12 дней (Приложение 3).

На первом этапе работы мы изучали теоретическую сторону вопроса. Проанализировав литературу по теме исследования, мы пришли к следующим выводам:

– батарейка – это удобное хранилище электричества, которое может быть использовано для обеспечения энергией переносных устройств;подключив к батарейке нагрузку, например, лампочку, от пластины «+» к пластине «-» потечёт ток;

Читайте также:  На зиму помидоры в томате купорить

– появление электричества объясняется взаимодействием двух различных металлов, между которыми образуется химическая реакция;

– батарейки, которые можно заряжать многократно, изобрел в 1859г. французский физик Гастон Планше;

– ученые утверждают, что, если у вас дома отключат электричество, вы сможете некоторое время освещать свой дом при помощи овощей или фруктов; они достигли некоторых успехов в своих исследованиях.

Картофель как источник тока

Опрос «Что вы знаете о токе»

В ходе изучения теоретической стороны вопроса, мы узнали, что такое батарейка и принцип ее работы. В практической части исследования мы решили выяснить у своих сверстников, что им известно о токе. С этой целью мы провели опрос среди одноклассников.

На вопрос «Как ты считаешь, на что похож ток»? большинство, 21 человек (75%), ответили, что на пчелок, бегающих по проводам, 7 человек (25%) –на течение рекии никто – на спящего человека.

На вопрос «С помощью каких приборов можно измерить электрический ток?» почти все ученики – 23 человека (82%) – ответили, что мультимером. Но когда мы поинтересовались, знали ли ребята точный ответ, выяснилось, что ответ был дан методом исключения. Ребята исключили из ответов «часы» и «термометр».

На вопрос «Что может вырабатывать электричество» лидировали два ответа: электрическая плита и гидроэлектростанция. Яблоки, лимон, вареный картофель были названы только 4 (14%) опрошенными.

На IVвопрос (Можно ли прожить современному человеку без электричества?) был получен однозначный ответ «нет» (Приложение 4).

Вывод. Знания по затронутой нами проблеме недостаточные, может, в силу возраста? Но нашей работой одноклассники заинтересовались.

Наш эксперимент. Как мы делали батарейку

Для того чтобы провести эксперимент, приготовили все необходимое. Совместно с папой изготовили электроды из цинка и меди, приобрели светодиод.

Мы решили провести исследование на картофеле.

Для этого мы вставили в каждую картофелину медный и цинковый электроды, соединив цепь проводами для подключения их к мультиметру –специальному прибору для измерения напряжения и силы тока. С помощью мультиметра можно наглядно увидеть, сколько вольт даёт батарейка (Приложение 5).

Как же изготовить батарейку?

С одной стороны, воткнуть в картофель цинковый электрод приблизительно на треть его длины. С другой, кусочек медной проволоки.

Картофель работает как батарейка: медь – положительный (+) полюс, а цинковый электрод – отрицательный (-). К сожалению, это очень слабый источник энергии. Но папа подсказал, что его можно усилить, соединив последовательно несколько картофелин, вставить цинковые электроды и медные проволоки в другие картофелины. Соединить картофелины таким образом, чтобы цинковый электрод первого картофеля подключался к медной проволоке второго и т.д. И, наконец, подключить светодиод.

Как же теперь убедиться в том, что батарея работает?

Один из способов – подключить к ней устройство мультиметр, которое позволит измерить напряжение и силу тока батарейки.

Другой способ – приложить два свободных конца проволок к контактам светодиода (лампочки), он загорится (Приложение 5).

Вывод. Батарейка дала ток! Картофель – источник электроэнергии. И пусть зарядить телефон на данном этапе не получится – слишком мала сила тока – мы продолжим наше исследование, проведем еще ряд экспериментов и постараемся добиться поставленной цели.

Знаешь сам, расскажи друзьям

Уже на этапе опроса, мы заметили интерес одноклассников к нашей работе. Поэтому следующим шагом стал классный час, на котором мы поделились своими знаниями. А эксперимент по получению тока из картофеля проводили уже все вместе. Надеемся, в будущем это поможет нашим одноклассникам с интересом изучать физику.

Вывод. Фраза «Знаешь сам, расскажи друзьям» пошла ребятамна пользу. У многих ребят проявился интерес и стали возникать свои идеи (Приложение 6).

Подводя итог опытно-экспериментальной части исследования можно утверждать:

опрос «Что вы знаете о токе», который мы провели среди одноклассников, показал, что знания по затронутой нами проблеме недостаточные, скорее всего в силу возраста, но нашей работой одноклассники заинтересовались;

в результате собственного эксперимента мы убедились, что картофель работает как батарейка: медь – положительный (+) полюс, а цинковый электрод – отрицательный (-), но к сожалению, это очень слабый источник энергии;

зарядить телефон на данном этапе не получится, но мы продолжим наше исследование, проведем еще ряд экспериментов и постараемся добиться поставленной цели;

классный час, проведенный нами по результатам эксперимента, вызвал у одноклассников положительные эмоции, а также желание самим совершать «открытия», а значит, наш труд не пропал даром.

Начиная исследование, мы поставили перед собой цель получить ток из картофеля.

В ходе решения задач исследовательской работы мы узнали, что такое батарейка и разобрались с принципом ее работы, мы выяснили, что еще в 1791 году Итальянский врач Луиджи Гальвани сделал важное наблюдение, только не сумел его правильно истолковать.Итальянский ученый граф Алессандро Вольта в 1800 году повторил опыты Гальвани, но с большей точностью. Итак, Гальвани открывает биологические эффекты электричества, Вольта изобретает источник постоянного тока — гальванический элемент (1800).

Примечательны успехи ученых в создании овощных и фруктовых батареек. Ученые разных стран добились результатов по получению электрического тока из лимона, картофеля, из переработанных бананов и апельсиновых корок.

Читайте также:  Можно ли давать свиньям ботву красной свеклы

Нами были решены также все практические задачи исследования. В результате опроса было выяснено, что знаний у ребят недостаточно, но тема интересна, поэтому мы провели классный час, на котором рассказали обо всем, что узнали сами, а также продемонстрировали опыт. В результате все ребята убедились, что картофель может включить лампочку.

Нашей мечтой было суметь зарядить мобильный телефон при помощи картофеля, однако, на данном этапе осуществить ее не удалось – мала сила тока. Тем не менее, считаем, что цели исследования достигли, ведь мы сумели получить ток из картофеля. Гипотеза исследования, в которой мы предполагали, что из картофеля можно сделать источник тока – батарейку – полностью подтвердилась. На будущее планируем провести ряд экспериментов и постараться усилить силу тока из картофеля или другого необычного источника, которого хватило бы на то, чтобы зарядить мобильный телефон.

Такие удивительные батарейки

Опрос «Что ты знаешь о токе»

1.Как ты считаешь, на что похож электрический ток:

б) на человека, который спит;

в) на множество маленьких пчёлок, которые бегают по проводам.

2. С помощью каких приборов можно измерить электрический ток?

3. Что может вырабатывать электричество:

а) электрическая плита;

б) яблоки, лимон, варёный картофель;

4. Можно ли прожить современному человеку без электричества?

1.Как ты считаешь, на что похож электрический ток?

2. С помощью каких приборов можно измерить электрический ток?

3. Что может вырабатывать электричество?

Для проведения опыта необходимо:

– электроды из цинка и меди

Узнаем сколько дает напряжение одна картофелина

Последовательно соединяем несколько картофелин…

Узнаем общее напряжение… Присоединяем светодиод

Источник

Проектная работа «Картофельная батарейка»

Городской конкурс исследовательских работ и творческих проектов младших школьников

«Я – исследователь»

Синицкий Павел Андреевич

МБОУ «Начальная общеобразовательная школа №2» г.Чебоксары Чувашской Республики

Фролова Ольга Александровна, классный руководитель 3 С класса МБОУ «Начальная общеобразовательная школа №2» г.Чебоксары Чувашской Республики

2. Подготовка и проведение опыта

4. Список литературы

Потребление электричества является одним из важнейших условий существования современного общества. Интернет, автомобили, заводы и фабрики, больницы, школы, жилые дома, смартфоны и планшеты, а также многое другое сегодня используют электричество. Без него современный мир существовать не может. Считается, что достаточно нескольких суток без электричества, чтобы любой город на планете захлестнула волна преступности. А нескольких минут без электричества на птицефабрике приведут к гибели тысяч птиц.

Между тем, использующиеся в настоящее время запасы углеводородов, такие как газ, нефть и уголь, исчерпаемы. К 2050 году основные запасы закончатся.

Поэтому крайне актуальным является переход на альтернативные, возобновляемые источники электроэнергии, использующие свет солнца, силу воды и ветра. К примеру, в Чувашии электричество вырабатывается на Чебоксарской гидроэлектростанции, а солнечные батареи изготовляются на Новочебоксарском заводе «Хевел». А вот ветроэлектростанции в Чувашии не прижились. Такая станция в Мариинско-Посадском районе просуществовала 10 лет и закрылась. Все из-за того, что в республике низкие среднегодовые скорости ветров.

Всего же в России 189 гидроэлектростанций, но таких мощных, как Чебоксарская, всего 14. Электростанций на солнечных батареях только 34, и в ближайшие годы появятся еще 48. Меньше всего ветряных электростанций – 18, и еще 21 строится.

Есть и другие способы получения электричества. Об одном из них я сегодня расскажу.

Доказать возможность получения электричества при взаимодействии меди и железа в кислотной среде.

Провести опыт по получению электрического тока при окислении железа.

Теоретический – формулирование гипотезы о получении электрического тока при взаимодействии меди и железа в кислой среде.

Эмпирический – проведение опыта с использованием электролита в виде картофеля, металлических (медного и железного) электродов и светодиодной лампочки.

Электрод – твердое вещество, способное проводить электрический ток и находящееся в контакте с электролитом (см. приложение рис.1).

Электролит – раствор или сплав, проводящий электрический ток (см. приложение рис.1).

При взаимодействии медных и железных электродов в кислой среде картофеля вырабатывается электрический ток, способный зажечь светодиодную лампочку.

Для получения электричества при окислении электродов существуют много разных способов. В качестве электродов можно использовать медные, железные или цинковые гвозди, шурупы, проволоку и даже монеты. Еще лучше изделия из серебра и золота.

В качестве электролитов подойдут многие фрукты и овощи: картофель, лимон, апельсин, помидор, огурец, а также уксус или даже земля и древесина.

Для проведения опыта понадобятся

— 7 картофелин (см. приложение рис.2);

— 7 железных гвоздей (см. приложение рис.3);

— 7 отрезков медной проволоки (см. приложение рис.4);

— 8 отрезков провода (см. приложение рис.5);

— 1 светодиодная лампочка (см. приложение рис.6).

Втыкаем в каждую картофелину с одной стороны отрезок медной проволоки (см. приложение рис.7), с другой – железный гвоздь (см. приложение рис.8). Соединяем гвозди и отрезки меди проводами (см. приложение рис.9). Подсоединяем светодиодную лампочку (см. приложение рис.10).

Медные электроды притянули с каждого атома железного электрода по два электрона, их движение вызвало электричество, с помощью которого загорелась светодиодная лампочка.

В результате опыта светодиодная лампочка загорелась. Это значит, что при окислении железных электродов медными в кислой среде появилось электричество. Таким образом, выполнена задача и достигнута цель исследования.

Источник

Поделиться с друзьями
Adblock
detector